What Is Synthetic Data and Why It Needs Master Data Management

Matthew Cawsey | February 10, 2022 | 4 minute read

See how you can turn trusted data into a competitive advantage

Get in touch

What Is Synthetic Data and Why It Needs Master Data Management

Master Data Management Blog by Stibo Systems logo
| 4 minute read
February 10 2022
What is Synthetic Data & How It Is Used in AI ➤
8:09

Synthetic data is test data that makes business operations run smoothly; if they are automated with AI or machine learning (ML), master data management is critical to be sure decisions are unbiased.

Data generates data which in turn generates more data. How do we know if what is being produced is fit for purpose? What if a bot, designed to help us to make an informed investment decision or simply provide the best answer to our customer services question, gets it wrong?
Obviously, testing all different corners of solution sets is important. As AI takes a more dominant role in automating decision processes, it is essential to make sure MLOps (maching learning operations), enabled by master data management, are working from high-quality data that is explainable (XAI), trustworthy and free from bias.

what is synthetic data and why is synthetic data used in financial services

Before data becomes operational, it often needs to be organized into data sets to support different types of testing and modelling requirements to see how applications, analytical models and AI-based processes will perform against these real-world/representative/experimental data sets. This is where you need synthetic data.

 

What is synthetic data and why is it increasingly important?

Synthetic data is generated algorithmically to compensate for real-world data. It supports requirements where real operational data may be insufficient. In many cases, synthetic data derives much of its content from production data; and synthetic data will often be true to the statistical nature of the source data without being an exact copy. Over and above representative real-world data, synthetic data may also include data sets that drive “paths” to test expectations on system behavior under certain conditions and facilitate predictive analytics.

Obviously, synthetic data needs to equal the same level of trust as operational data to be able to deliver useful results. Synthetic data must also be explainable and free from bias for use with AI applications. For that reason, it is crucial first to get the operational, or production data right to provide the starting point for synthetic data generation. It is also important to ensure that use cases not normally found in production data can be assembled and organized. To this end, master data management can help.

 

What is master data management?

When we think of master data we think mostly of operational data:

Master data management is a key enabler for providing a single, trusted view of business-critical information, such as customer data. Having trusted master data can help you reduce the costs of application integration, improve customer experiences and yield actionable insight from analytics.

At the crux of making master data both trustworthy and insightful is having a transparent view of it. Transparency originates from the meaning, purpose and governance policy defining the data.

Master data management defines and implements governance policies to certify that important qualities of master data - including origin, accuracy, coherence, accessibility, security, auditability and ethics - are under supervision and measured against business objectives.

Master data management can help you govern your data sets to ensure a more reliable and complete representation of it when generated as synthetic data sets. Good synthetic data sets improve the ability of data science projects to yield better outcomes for forecasting and machine learning.

 

Synthetic data in AI and machine learning

Synthetic data management is a foundational requirement for AI and machine learning. ML models need to be trained; to do that, they need data. Synthetic data can provide the needed quantities and use cases for ML. Master data management helps support non-bias, and in turn, trusted results, by providing good data to explainable AI verification.

 

Use of synthetic data in retail

Let’s imagine the launch of a new product. What effect will its placement have on its sales? Which customer segments are more likely to purchase it?

Testing product introduction from a data science perspective, requires access to good, representative data en masse. And this will start with including existing customer and product data. The accuracy and visibility of this data is key to measure and remediate prior to any analytics. This is where master data management can help.

The master data management supports and secures the proper implementation of a policy for customer data, including accountabilities and criteria for completeness and quality. The retailer does not necessarily need a full 360° view of the customer but simply a view that is fit for the specific purpose: creating the synthetic data sets that corroborate a forecasting of the sales potential of the new product.

Should the real-world data lack in richness and volume to support generating data that tests more corners and decision paths, master data management can help by managing anonymous customer data sets that have higher quality.

Having aligned the data rules in the master data management with the goals of the data science or ML project, the retailer is now able to develop appropriate synthetic data sets for subsequent predictive analytics.

AI/ML is becoming a ubiquitous part of the customer experience in helping consumers make informed choices. For example, should the consumer create a collection of viewed products, then the ML algorithms can look at the product’s attributes to propose complementary products and services based on the consumer’s behavioral pattern.

 

Use of synthetic data in financial services

The financial services sector has a significant number of key synthetic data management use cases. For example, banking or insurance data can contain some very sensitive personally identifiable attributes. But at the same time, financial services companies need to share information with business partners and regulators. Generating synthetic data sets can help remove personal information, also known as data masking, while preserving the essence of the complex data relationships within. In training a fraud algorithm, you don’t really need to have the name of the person involved. You will, however, need to recognize a statistical pattern that represents a suspicious activity.

When analyzing historical trends, the generation of synthetic data sets that represent both actual events and the what-if scenarios is needed if the mistakes of the past are to be avoided. When looking at the future, data sets need to be created that reflect the movement from current to future trends – crucial when imagining your next product or service.

 

Master data management brings governance to synthetic data to make outcomes explainable

Master data management ensures original production data sets are able to yield representative and helpful synthetic data sets. In some cases, master data management may be needed to manage some elements of those synthetic data sets so they can be curated for machine learning. While techniques such as data masking and synthetic data production (plenty of tools exist to do this) may be used to transform individual attributes, the ability to ensure an honest representation of the original sources can benefit from the data governance policies master data management applies.

Master data management improves the pertinence and explainability of synthetic data by implementing a process to ensure the curation of the originating or synthetic information is representative, coherent, of high quality and insightful. This in turn will make AI more explainable, induce less bias and produce more trustworthy results.


Master Data Management Blog by Stibo Systems logo

Driving growth for customers with trusted, rich, complete, curated data, Matt has over 20 years of experience in enterprise software with the world’s leading data management companies and is a qualified marketer within pragmatic product marketing. He is a highly experienced professional in customer information management, enterprise data quality, multidomain master data management and data governance & compliance.

Discover Blogs by Topic

  • MDM strategy
  • Data governance
  • Customer and party data
  • See more
  • Retail and distribution
  • Data quality
  • AI and machine learning
  • Manufacturing
  • Product data and PIM
  • Supplier data
  • Financial services
  • CPG
  • Sustainability
  • GDPR
  • Customer Experience
  • Location data
  • Product Experience Data Cloud
  • Customer Story
  • PDX Syndication
  • Auto Classification
  • Business Partner Data Cloud
  • Cloud
  • Compliance
  • Data Cleanup
  • Data-Driven Decision Making
  • Employee Data
  • Enterprise Data Strategy
  • Location Data Cloud
  • Microsoft Azure
  • Product
  • Product Onboarding
  • Supplier Data Cloud
  • Sustainability Data

Trust the Machine: Making AI Automation Reliable in Master Data Management

4/4/25

How Agentic Workflows Are Changing Master Data Management at the Core

4/2/25

MDM and AI: Real-World Use Cases and Learnings From OfficeMax and Motion Industries

3/7/25

Reyes Holdings' MDM Journey to Better Data

2/27/25

AI Adoption: A High-Stakes Gamble for Business Leaders

1/28/25

How Kramp Optimizes Internal Efficiency with Data Strategy

1/27/25

From Patchwork to Precision: Moving Beyond Outdated and Layered ERP Systems

1/27/25

Thriving Beyond NRF 2025 with Trustworthy Product Data

1/24/25

Building the Future of Construction with AI and MDM

1/23/25

Why Addressing Data Complexity in Pharmaceutical Manufacturing Is Critical

1/17/25

How URBN Leverages Data Management to Support Its Sustainability Information  

1/17/25

How to Avoid Bad Retail Customer Data

1/6/25

Gen Z: Seeking Excitement Beyond Amazon

12/11/24

A Modern Guide to Data Quality Monitoring: Best Practices

12/10/24

CDP and MDM: Complementary Forces for Enhancing Customer Experiences

12/10/24

Using Machine Learning and MDM CBAM for Sustainability Compliance

12/3/24

How to Implement Master Data Management: Steps and Challenges

11/26/24

AAPEX and SEMA: The Automotive Aftermarket Industry’s Mega-Showcase

11/25/24

5 Key Trends in Product Experience Management

11/20/24

Solving Retail Data Fragmentation: The Key to Consistent Customer Journeys

11/11/24

Live Shopping: How to Leverage Product Information for Maximum Impact

10/22/24

Why Data Accuracy Matters for CPG Brands

10/16/24

Why Choose a Cloud-Based Data Solution: On-Premise vs. Cloud

10/15/24

How to Use Customer Data Modeling

10/10/24

How Master Data Management Can Enhance Your ERP Solution

9/23/24

Navigating Change: Engaging Business Users in Successful Change Management

9/20/24

What is Digital Asset Management?

9/11/24

How to Improve Your Data Management

9/3/24

The Future of Master Data Management: Trends in 2025

9/1/24

Digital Transformation in the CPG Industry

8/30/24

5 CPG Industry Trends and Opportunities for 2025

8/29/24

What is the difference between CPG and FMCG?

8/27/24

Responsible AI Relies on Data Governance

8/27/24

Making Master Data Accessible: What is Data as a Service (DaaS)?

8/19/24

6 Features of an Effective Master Data Management Solution

8/15/24

Great Data Minds: The Unsung Heros Behind Effective Data Management

8/13/24

A Data Monetization Strategy - Get More Value from Your Master Data

8/6/24

Introducing the Master Data Management Maturity Model

8/4/24

What is Augmented Data Management? (ADM)

7/31/24

Data Migration to SAP S/4HANA ERP: The Fast and Safe Approach with MDM

7/30/24

GDPR Data Governance and Data Protection, a Match Made in Heaven?

7/17/24

The 5 Biggest Retail Trends in 2025

6/10/24

The Difference Between Master Data and Metadata

5/26/24

Master Data Management Roles and Responsibilities

5/20/24

8 Best Practices for Customer Master Data Management

5/16/24

What Is Master Data Governance – And Why Do You Need It?

5/12/24

Guide: Deliver flawless rich content experiences with master data governance

4/11/24

Risks of Using LLMs in Your Business – What Does OWASP Have to Say?

4/10/24

Guide: How to comply with industry standards using master data governance

4/9/24

Digital Product Passports - A Data Management Challenge

4/8/24

Guide: Get enterprise data enrichment right with master data governance

4/2/24

Guide: Getting enterprise data modelling right with master data governance

4/2/24

Guide: Improving your data quality with master data governance

4/2/24

5 Tips for Driving a Centralized Data Management Strategy

3/18/24

What is Application Data Management and How Does It Differ From MDM?

3/18/24

5 Key Manufacturing Challenges in 2025

2/20/24

How to Enable a Single Source of Truth with Master Data Management

2/20/24

What is Data Quality and Why It's Important

2/12/24

Data Governance Trends 2025

2/7/24

What is Data Compliance? An Introductory Guide

2/6/24

How to Build a Master Data Management Strategy

1/18/24

The Best Data Governance Tools You Need to Know About

1/16/24

How to Choose the Right Master Data Management Solution

1/15/24

Building Supply Chain Resilience: Strategies & Examples

12/19/23

Shedding Light on Climate Accountability and Traceability in Retail

11/29/23

What is Party Data? All You Need to Know About Party Data Management

11/20/23

Location Analytics – All You Need to Know

11/13/23

Understanding the Role of a Chief Data Officer

10/16/23

What is Smart Manufacturing and Why Does it Matter?

10/11/23

5 Common Reasons Why Manufacturers Fail at Digital Transformation

10/5/23

How to Digitally Transform a Restaurant Chain

9/29/23

Three Benefits of Moving to Headless Commerce and the Role of a Modern PIM

9/14/23

12 Steps to a Successful Omnichannel and Unified Commerce

7/6/23

Navigating the Current Challenges of Supply Chain Management

6/28/23

Product Data Management during Mergers and Acquisitions

4/6/23

A Complete Master Data Management Glossary

3/14/23

Asset Data Governance is Central for Asset Management

3/1/23

4 Common Master Data Management Implementation Styles

2/21/23

How to Leverage Internet of Things with Master Data Management

2/14/23

Manufacturing Trends and Insights in 2025

2/14/23

Sustainability in Retail Needs Governed Data

2/13/23

A Quick Guide to Golden Customer Records in Master Data Management

1/9/23

Innovation in Retail

1/4/23

Life Cycle Assessment Scoring for Food Products

11/21/22

Retail of the Future

11/14/22

Omnichannel Strategies for Retail

11/7/22

Hyper-Personalized Customer Experiences Need Multidomain MDM

11/5/22

What is Omnichannel Retailing and What is the Role of Data Management?

10/25/22

Most Common ISO Standards in the Manufacturing Industry

10/18/22

How to Get Started with Master Data Management: 5 Steps to Consider

10/17/22

What is Supply Chain Analytics and Why It's Important

10/12/22

An Introductory Guide: What is Data Intelligence?

10/1/22

Revolutionizing Manufacturing: 5 Must-Have SaaS Systems for Success

9/15/22

An Introductory Guide to Supplier Compliance

9/7/22

Digital Transformation in the Manufacturing Industry

8/25/22

Master Data Management Framework: Get Set for Success

8/17/22

Discover the Value of Your Data: Master Data Management KPIs & Metrics

8/15/22

Supplier Self-Service: Everything You Need to Know

6/15/22

Omnichannel vs. Multichannel: What’s the Difference?

6/14/22

Create a Culture of Data Transparency - Begin with a Solid Foundation

6/10/22

What is Location Intelligence?

5/31/22

Omnichannel Customer Experience: The Ultimate Guide

5/30/22

Omnichannel Commerce: Creating a Seamless Shopping Experience

5/24/22

Top 4 Data Management Trends in the Insurance Industry

5/11/22

What is Supply Chain Visibility and Why It's Important

5/1/22

The Ultimate Guide to Data Transparency

4/21/22

How Manufacturers Can Shift to Product as a Service Offerings

4/20/22

How to Check Your Enterprise Data Foundation

4/16/22

An Introductory Guide to Manufacturing Compliance

4/14/22

Multidomain MDM vs. Multiple Domain MDM

3/31/22

How to Build a Successful Data Governance Strategy

3/23/22

What is Unified Commerce? Key Advantages & Best Practices

3/22/22

How to Choose the Right Data Quality Tool?

3/22/22

What is a Data Domain? Meaning & Examples

3/21/22

6 Best Practices for Data Governance

3/17/22

5 Advantages of a Master Data Management System

3/16/22

A Unified Customer View: What Is It and Why You Need It

3/9/22

Supply Chain Challenges in the CPG Industry

2/24/22

Top 5 Most Common Data Quality Issues

2/14/22

What Is Synthetic Data and Why It Needs Master Data Management

2/10/22

What is Cloud Master Data Management?

2/8/22

How to Implement Data Governance

2/7/22

Build vs. Buy Master Data Management Software

1/28/22

Why is Data Governance Important?

1/27/22

Five Reasons Your Data Governance Initiative Could Fail

1/24/22

How to Turn Your Data Silos Into Zones of Insight

1/21/22

How to Improve Supplier Experience Management

1/16/22

​​How to Improve Supplier Onboarding

1/16/22

What is a Data Quality Framework?

1/11/22

How to Measure the ROI of Master Data Management

1/11/22

What is Manufacturing-as-a-Service (MaaS)?

1/7/22

The Ultimate Guide to Building a Data Governance Framework

1/4/22

Master Data Management Tools - and Why You Need Them

12/20/21

The Dynamic Duo of Data Security and Data Governance

12/20/21

How to Choose the Right Supplier Management Solution

12/20/21

How Data Transparency Enables Sustainable Retailing

12/6/21

What is Supplier Performance Management?

12/1/21

How to Create a Marketing Center of Excellence

11/14/21

The Complete Guide: How to Get a 360° Customer View

11/7/21

How Location Data Adds Value to Master Data Projects

10/29/21

What is Supplier Lifecycle Management?

10/19/21

What is a Data Mesh? A Simple Introduction

10/15/21

10 Signs You Need a Master Data Management Platform

9/2/21

What Vendor Data Is and Why It Matters to Manufacturers

8/31/21

3 Reasons High-Quality Supplier Data Can Benefit Any Organization

8/25/21

4 Trends in the Automotive Industry

8/11/21

What is Reference Data and Reference Data Management?

8/9/21

GDPR as a Catalyst for Effective Data Governance

7/25/21

All You Need to Know About Supplier Information Management

7/21/21

How to Become a Customer-Obsessed Brand

5/12/21

How to Create a Master Data Management Roadmap in Five Steps

4/27/21

What is a Data Catalog? Definition and Benefits

4/13/21

How to Improve the Retail Customer Experience with Data Management

4/8/21

Business Intelligence and Analytics: What's the Difference?

3/25/21

What is a Data Lake? Everything You Need to Know

3/21/21

How to Extract More Value from Your Data

3/17/21

Are you making decisions based on bad HCO/HCP information?

2/24/21

CRM 2.0 – It All Starts With Master Data Management

12/19/20

5 Trends in Telecom that Rely on Transparency of Master Data

12/15/20

10 Data Management Trends in Financial Services

11/19/20

Seasonal Marketing Campaigns: What Is It and Why Is It Important?

11/8/20

What Is a Data Fabric and Why Do You Need It?

10/29/20

Transparent Product Information in Pharmaceutical Manufacturing

10/14/20

How to Improve Back-End Systems Using Master Data Management

9/19/20

How Retailers Can Increase Online Sales in 2025

8/23/20

Master Data Management (MDM) & Big Data

8/14/20

Key Benefits of Knowing Your Customers

8/9/20

Customer Data in Corporate Banking Reveal New Opportunities

7/21/20

How to Analyze Customer Data With Customer Experience Data Cloud

7/21/20

4 Ways Product Information Management (PIM) Improves the Customer Experience

7/18/20

How to Estimate the ROI of Your Customer Data

7/1/20

Women in Master Data: Rebecca Chamberlain, M&S

6/24/20

How to Personalise Insurance Solutions with MDM

6/17/20

How to Get Buy-In for a Master Data Management Solution

5/25/20

Marketing Data Quality: Why Is It Important and How to Get Started

3/26/20

Get More Value From Your CRM With Customer Master Data Management

2/17/20

Women in Master Data: Nagashree Devadas, Stibo Systems

2/4/20

How to Create Direct-to-Consumer (D2C) Success for CPG Brands

1/3/20

Women in Master Data: Anna Schéle, Ahlsell

10/25/19

How to Improve Your Product's Time to Market With PDX Syndication

7/18/19

8 Tips For Pricing Automation In The Aftermarket

6/1/19

How to Drive Innovation With Master Data Management

3/15/19

Discover PDX Syndication to Launch New Products with Speed

2/27/19

How to Benefit from Product Data Management

2/20/19

What is a Product Backlog and How to Avoid It

2/13/19

How to Get Rid of Customer Duplicates

2/7/19

4 Types of IT Systems That Should Be Sunsetted

1/3/19

How to Reduce Time-to-Market with Master Data Management

10/28/18

How to Start Taking Advantage of Your Data

9/12/18

GDPR: The DOs and DON’Ts of Personal Data

6/13/18

How Master Data Management Supports Data Security

6/7/18

Frequently Asked Questions (FAQ) About the GDPR

5/30/18

3 Steps: How to Plan, Execute and Evaluate Any IoT Initiative

2/20/18

How to Benefit From Customer-Centric Data Management

9/7/17

Product Information Management Trends to Consider

5/25/17

4 Major GDPR Challenges and How to Solve Them

5/12/17

How to Prepare for GDPR in Five Steps

2/21/17

How Data Can Help Fight Counterfeit Pharmaceuticals

1/24/17

Create the Best Customer Experience with a Customer Data Platform

1/11/17